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Abstract

This paper is devoted to deriving some inequalities, among them the inequality
of the arithmetic and geometric means, triangle inequality, Minkowski’s inequal-
ity, etc., from Jensen’s inequality applied for some convex functions. Additional
properties of convex functions are also considered.
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1 Introduction. Preliminaries

Definition 1 A numerical function f : X — IR defined on a convex nonempty set X C
R"™ is said to be conver if for every x1,x5 € X, t € [0,1] we have that

fltx + (1 —t)xz) < tf(x1) + (1 —t)f(x2), (1.1)

and it is said to be strictly convex if for every x;,x5 € X, x; #x5, 0<t <1 we have
that

fltx+ (1 —t)x2) <tf(x1) + (1 —1)f(x2). (1.2)

Obviously, each strictly convex function is convex.
If we take “ > 7 instead “ <7 in (1.1) and “ > 7 instead “ < ” in (1.2), we obtain
definitions of concave and strictly concave function, respectively.

Theorem 1 Let f be a numerical differentiable function on an open convex set X C R".
A necessary and sufficient condition that f be convez is that for each x1,Xs € X,

(f'(x2) = f'(x1),%x2 — x1) > 0.



Theorem 2 Let f be a numerical twice-differentiable function on an open convexr set
X C R". f is convex on X if and only if f"(x) is positive semidefinite on X, that is, for
each x € X,

(y, ["(x)y) = 0
for ally € R".

If f is a function in one variable then the following (more specific) propositions hold.

Proposition 1 ([2, pp. 133-135], [8, p. 45]) A real-valued function f : (a,b) — R is
convex on (a,b) if and only if the “slope” function (the difference quotient)

der f(x) — flzo
By (o) 2 TD 2 )\ )
r — X
is monotone nondecreasing in (a,b)\{xo} for an arbitrary xo € (a,b) and for all choices
of x not equal to xg.
Similarly, strict convezity is characterized by strict increasing “slope” function A, (z)

of x € (a,b)\{zo}.

Proposition 2 Let f : (a,b) — R and f'(z) exists for any x € (a,b). f is convex (strictly
convez) in (a,b) if and only if f' is monotone nondecreasing (monotone increasing) in
(a,b).

Proposition 3 Let f : (a,b) — R and f"(z) exists for any x € (a,b). Necessary and
sufficient condition for f(x) to be convex (strictly convez) in (a,b) is f"(z) > 0(f"(x) > 0)
for any x in (a,b).

Theorem 3 (Jensen’s inequality 1906, Johann Ludwig Jensen 1859-1925, [9])

Let f be a real-valued function defined on a convex subset D of R", and let \yx1+. . .+ 2y
be a convex combination of points xi,...,x, in D, that is, \; > 0,4 = 1,...,n and
M+ ...+ X, =1. Then f is convex if and only if

Proof. Without loss of generality let \; > 0, otherwise the number of terms in the sum
is less than m.
Necessity. (By induction) Let f be convex. If m = 2 then f is convex by definition.
Let the inequality be satisfied for m = k — 1. Verify it for m = k. Consider the point

k k
x =Y Nx; where x;€ X, N >0,i=1,....k > X\ =

i1 i=1
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where A\ = Z Ai. Since % > 0, Z N XZ A =1, x; € X and X is a convex set,
i=2 i=2 i=2
then .
g Ny e x,
- A

Because f is convex and x1,y € X, A\ + A =1, A\;, A € [0, 1], then

f(x) = f(Aixi +Ay) < A f(x) + Af(y)

On the other hand,

according to the inductive hypothesis. From both inequalities it follows that

f (i Am) =f (Alxl + AZ ) = f(uxg +y) <

=2

>/\>/

< /\1 2 Xl = /\1f(X1) + Z )\Zf(Xz) = Z )\zf(xz)

Alternative proof of “necessity” part of Theorem 3.

As above, without loss of generality let A; > 0,i=1,... m.Ifx; € dom f,i=1,...,m
then f(x;) = 400, \;f(x;) = +00 and Jensen’s inequality is trivially satisfied, where dom
f is the effective domain of f.

Otherwise, let x; € dom f, i = 1,...,m. Since the epigraph epi f is a convex set (f
is convex) then (x;, f(x;)) € epif, i=1,...,m imply

(Mxy 4+ o XX, M f(x1) + o A f(xm)) € epif
according to a property of the epigraph epi f. Therefore
f()\lxl + ...+ )\me) S Alf(Xl) + ...+ )\mf(Xm)

by definition of epi f.
Sufficiency. Let Jensen’s inequality be satisfied for f with arbitrary m. Then this
inequality with m = 2 implies convexity of f. [

Definition 2 ([6], p. 205) Let 0 be a positive integer. A real-valued function f defined on
a convex cone C' with vertex at @ is said to be homogeneous of degree § if f(Ax) = \° f(x)
for any z € C' and any A > 0.

Theorem 4 ([6], p. 205) Suppose that f is a convex function defined on a convexr cone
C' with vertex at 0 and that f(x) > 0 for all x # 6 in C. If f is homogeneous of degree §
then the function g defined on C by g(z) = [f(x)]5 is convez on C.



Examples.
1. Affine (linear) function /(x) = (¢, x) + a, ¢,x € R",a € R, where (x,y) denotes
the scalar (inner) product of x,y € R", is both convex and concave.

2. Quadratic function f(z) = 2%, x € R is strictly convex according to Proposition 3.
3. f(z) =|z|, = € R is a convex function.

4. f(x) =2P, p> 1,2 € (0,00) is strictly convex according to Proposition 3.

5. f(z) =Inz, xz € (0,00) is strictly concave on (0, 00) according to Proposition 3.

6. f(x) =Insinz is strictly concave on (0, 7) according to Proposition 3.

7. f(x) =Insinz — Inx is strictly concave for x € (0, 7) according to Proposition 3.

2 Applications of Jensen’s Inequality

1. Weighted (Generalized) Arithmetic-Geometric Mean Inequality
Prove the inequality

92522 < ary + ety .+ g, (2.1)
n
where z; >0, a; > 0,1 =1,...,n, Z a; = 1.

Using Jensen’s inequality with the (strictly) convex function f(z) = —Inz, z € (0, 00)
(Example 5) we obtain

—1In (Z ozzxz> < Z ai(—Inz;), 0; >0,i=1,...,n Z =

=1 =1

Z oa;Inz; <In (Z aixi> ,

i=1

-1
Z Inz <In (Z aixi> ,
H xf“) <In (Z oz,-xi> .
‘ i=1

Since Inx is an increasing function with x > 0 (and e > 1) then

n n
H gt < Z T

i=1 i=1

forx; > 0,0, > 0,2 =1,. nZa,—l

Equality holds if and only 1f xl =9 = =T,.
When «; = n, i=1,...,n (these o;’s satisfy the requirements) we obtain the tradi-
tional arithmetic-geometric mean inequality

(sz> S*ZSE’@', z; >0,i=1,...,n
i=1 ni4
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2. (Weighted) Triangle Inequality
Prove the inequality

n
> i
i=1

n n
<> alml, @ >0i=4,...,n, ) a; =1, (2.2)
=1 =1

Application of Jensen’s inequality to the convex function f(z) = |z|,z € R (Example
3) leads to (2.2), the weighted triangle inequality with weights a;,i = 1,... n.
When «; = %,i =1,...,n, we have

n
D i
=1

n
=1

the triangle inequality.
When n = 2 we have the traditional triangle inequality for two elements.

3. Prove that the following inequality holds

/= - . L T w2 M i o
sinz;sinz, .. .sinx, < sin - (2.3)
n

where n is a positive integer, and x1,zs, ..., 2, are in (0, J).

Proof. Application of Jensen’s inequality to the strictly convex function f(z) =
—Insinx over the interval (0, %) (Example 6) leads to the inequality (2.3).

Remark 1. Condition z; € (0,3),i = 1,...,n guarantees that sinz; > 0,i=1,...,n
and nonnegativity of the radicand in the inequality (2.3).

4. Prove the inequality

1 n
ni= < (/ T1Xo ... Ty (2.4)
. (1 n > ~ \/sinzysinzy...sinz,’ ’
sin | =Y x;
ni=
where n is a positive integer, and z1, 9, ..., 2, are in (0, 7).

By using Jensen’s inequality for the strictly convex function f(z) = Ilnxz —Insinz, z €
(0,7) (Example 7) we get

In (Z aixl-> — Insin (Z aixl-> < Z a;(Inz; — Insinz;),
i=1 ;

i=1 =1
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P =
sin (Z OéiZL‘i)
i=1

Since In x is an increasing function of z with > 0 and e > 1 then

In the special case when «; = %,i =1,...,n, we obtain the inequality (2.4).

5. Minkowski’s Inequality 1896 (Hermann Minkowski 1864-1909)
Prove the inequality

where aq, as, ..., a, and (1, B, ..., 3, are nonnegative real numbers, and p is a positive
integer (that is, p > 1).

Denote x = (g, ..., ), Yy = (01, ..., n). Consider the function f(x Z of

Our purpose is to prove that f(x) is convex and homogeneous of degree p on the
nonnegative orthant in R". Indeed,

flx+(1—=t)y) = Enj [tai + (1 — t)B,]P =

{8 ()

E
£ fomrn e (omro-oar sl

=1

<3 {1 P+ e} <
=1

<3 {1057 +tal} = (1= 1) +£703),



where we have used that

X;: ( ) ta;)P[(1 = t)BJP " >0

with nonnegative oy, 3;,i = 1,...,n, t € [0,1],p > 1; and (1 — )P < 1 —¢, t? < ¢ with
t € [0,1],p > 1. Therefore, f(z) is convex by definition.
Moreover .
= )\&lp—)\pz of = N f(x),
=1 =1

p is a positive integer. Therefore f is homogeneous of degree p according to Definition 2.
1

n »
From Theorem 4 it follows that function (Z af ) is convex on IR’}. Hence
i=1

£ Gt <) )

=1

according to Jensen’s inequality.
Multiplying both sides by 2, we obtain Minkowski’s inequality (2.5).

3 Conclusions

Other inequalities can also be obtained by using the approach discussed in this paper.
For example, Hélder’s inequality (1889, Ludwig Otto Holder 1859-1937)

1 1
S aibs < (Z ag> ” (Z bf)q
i=1 i=1 i=1
where a; and b;,i = 1,...,n are nonnegative real numbers, p > 1,q > 1, % + % =1 can be
obtained by using Jensen’s inequality with the convex function f(z) = 2P, > 0,p > 1. In
the special case when p = ¢ = 2, Holder’s inequality is known as Cauchy-Schwarz inequal-
ity (1821, Baron Augustin Louis Cauchy 1789-1857, Karl Hermann Amandus Schwarz
1843-1921).

4 Bibliographical Notes
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